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A b s b c t  We discuss the Poisson-Lie structure of the integrable nonlinear O ( N )  a-model 
with the movingframe method. The corresponding r-  and s-matrices are given explicitly. 
We also perform the gauge transformation for the Lax potential and the r and s matrices. 
Furthermore. we discover that the field-dependent terms in our r- and s-matrices only 
depend on the Riemannian connection of the target manifold. 

1. Introduction 

Great progress has been made in understanding the algebraic structures of two-dimen- 
sional nonlinear integrable models with the Hamiltonian approach. The starting point 
of the discussion is to study the Poisson bracket between Lax potentials. For a lot of 
integrable models, such as the WZNW models and Toda systems. this bracket leads to 
a Lie-Poisson algebra as [5 ]  

{ L . ( x , a ) o L ( 4 . , ~ ) } = [ r ( a , p ) ,  L(x,a)oI + I o L ( x , ~ ) 1 6 ( x - ~ ) .  (1) 

with an antisymmetric r-matrix acting as its structural constant. This matrix, known 
as the classical r-matrix, satisfies the famous classical Yang-Baxter equation 

h 2 @ .  P ) ,  M A ,  ~91+lrlz(L. P ) ,  1 2 3 ( P ,  v)l+ [rt3(& v) .  d p ,  v ) l = O  (2) 

so that the Poisson structure of the dynamical systems is consistent. The importance 
of structure (1) lies in the central role it plays in the context of integrable systems [ 5 ] .  
The models fitting equation (1) are called ultralocal because the RHS of equation (1) 
contains only the delta function 6(x-y)  but not its derivatives. An important gen- 
eralization of the above Lie-Poisson structure to certain non-ultralocal models has been 
developed by Maillet [l]. In his new integrable canonical structure, equation (1) is 
replaced by 

{L(x,a)oL(y,p)}=-[r( .~,  a , p ) , L ( x , a ) @  I + ~ ~ L ( x , P ~ I ~ ~ x - Y )  

+is(x, asp). L(X, vs I - i o ~ ( x , w w ~ )  
- A P I  +s(x, a, P) - r ( ~ ,  a, P I  +s(Y ,  n, P ) ) ~ x - Y ) .  (3) 
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Besides the usual antisymmetric r-matrix, another symmetric s structural matrix is 
introduced in the new structure, and they both generally depend on the fields of the 
theory. This algebraic structure is the extension of the usual Lie-Poisson algebra for 
non-ultralocal integrable systems such as the nonlinear integrable a-models and princi- 
pal chiral models, and plays a prominent role in them. 

Integrable nonlinear a-models have clear geometric structures: their target mani- 
folds are Riemannian symmetric spaces. Recently, Forger et a1 obtained a pair of field- 
dependent Y- and s-matrices of the a-models defined OD Riemannian symmetric spaces 
[2]. However, due to the special geometric structure of the models, we still expect that 
r- and s-matrices have some geometrical meaning. Since geometric structure might be 
seen more clearly under transformations, we study the O(N) o-model with a different 
method-the so-called moving frame method. This method allows us to take gauge 
transformations for Lax matrices and r- and s-matrices conveniently. By using this 
method, we get a different form of the r- and s-matrices whose field-dependent terms 
are, as we expect, just the Riemannian connections on an ( N -  I)-dimensional sphere 
y-', the target manifold of the O(N) a-model. Furthermore, we find that the new 
form of r- and s-matrices can be changed into the form obtained by Forger er ai after 
a special gauge transformation. Here we note that the discussion can be generalized to 
any Riemannian symmetric space. A paper is being prepared on this. 

This paper is arranged as follows. In section 2, we review some important aspects 
of the O(N) o-model and give a new form of Lax pairs in moving frames. In section 
3, we work out the new form of r- and s-matrices under the simplest gauge. On the 
basis of the results obtained in section 2, we get the I -  and s-matrices under any gauge 
in section 4. These results show that the field-dependent terms of the r- and s-matrices 
are Riemannian connections. 

2. O(N) u-model 

A two-dimensional nonlinear a-model is a field theory in two-dimensional Minkovski 
space. Its Lagrangian is 

where uj's are the local coordinates of the target manifold of the model and {gu} is its 
Riemannian metric matrix. For the O(N) a-model, its target manifold SN-' - S O ( N ) /  
S O ( N -  1) is a Riemannian symmetric space, so there exists an involution operator 
n(n!= 1, but n Z  I). By using it, the Lie algebra 9 of S O ( N )  can be decomposed as 

9 = X + X  ( 5 )  

In. XI = O  [n, XI+ en%+ Xn = O  

so that X and X satisfy the following relations: 

[ P , X ] c P  [P. XI CX [ X ,  X I  CX. 

N ( X )  =g(x)ng-'(x) 

Usually, the a-field on the symmetric space is expressed as 
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where g(x) is the group element of SO(N). Obviously, 

N(.x)’= 1. 

Then the Lagrangian has the following form: 

Y(x)=&Tr(a,N(x) PN(x)). (7) 

Varying 9 ( x )  under the constraint condition (6), we obtain the motion equation 

8,KP(X) =o (8) 

K,(x) = - ~ N ( x )  ~,N(x). (9) 

j,(x) = -K,(x). 

where 

The conserved Noether currents are 

According to (3, the left-invariant Maurer-Cartan form Q,(x) also has a 
decomposition : 

a,(x)=g-l(x) a&) =h,(x)+k,(x) (10) 

where 
I h,(x)= ~ [ u , .  n]+naX 

k,(x) = ;[a,, n]n=g-’(x)K,(x)g(s)~~.  

From (7), (9) and ( l l ) ,  we get 

Y=-t(k#(X), V(x)) 

where ( , ) is the G-invariant inner product on the coset space. induced from the Killing- 
Cartan form of the Lie algebra 9, Correspondingly, the motion equation (8) can be 
expressed as 

(13) 

On the other hand, the pure gauge potential ap(x) satisfies the Maurer-Cartan 
equations : 

D,Y =a,k’ + [h, ,  V] =O. 

a,h,-d,h, + [h, , hv l  +lk,, k,l=O 

D,k,-D,k,=O. 

Let 

*k, = s,,k’ (-€o,=€IO=l) 

then (15) becomes 

D;V(x) = 0. 

Comparing with (13), we see that the theory admits a continual dual transformation. 
The result allows us to introduce a real linear combination of W(x) and *V(x) 

&(x,A)=ch ~k,(x)+sh~*k,(x)  
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where 

Then hK(x) and &(x, A) satisfy the same equations as I&) and $(.U): 

8,h" - a&, + [h, 3 h" 1 + rlz,, ["I =o (17) 

D,i?'(s, A ) = O .  (18) 

It means that $(x)+/&(x, A )  can also be expressed as a pure gauge, namely, 

We take these as the Lax pair equations in moving frames. The spatial part of Lax 
matrices is 

L(.r,A)=hl(x)+ch @ , ( x ) + s h  @k,(x). (20) 

Usually, one constructs another auxiliary linear equation 

8,U(X, A )  = U(x,  a) ~ +n.sgvj') (21) 1 - A 2  

whose spatial part of Lax matrices is 

where Cis  the Casimir tensor and j ( x )  is a scalar field. 
In the next section we will calculate the Y- and s-matrices for the O(N) 0-model by 

using the local moving-frame method, namely, we will take equation (20) rather than 
(22) as our starting point. The reason is that we can gauge transform (20) conveniently 
and see how the r- and s-matrices change under gauge transformation. Thus the geomet- 
rical characteristics of the r- and s-matrices can clearly be seen. 
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3. The r- and s-matrices io the moving frame 

The group element g of  SO(N)  can be written as 

g = d h  
where h e S O ( N - I )  and g ' e S O ( N ) / S O ( N - l ) .  For simplicity, first we take the 
Schwinger gauge, h= 1, namely, g=g' .  Now we can choose g as [3] 

~ = R I ( B I ) R ~ ( & ) .  . .RN-I(~N-I) (25) 
where R , ( 8 )  =exp (6'Ti(i+1)) and the generators T" of S O ( N )  can be chosen as 

( p b ) , d =  s d b d -  6 b c s - d .  

Their commutation relations are 

[T*, T c d ] = G ~ d ~ + 6 b ~ ~ d ~ s ~ ~ _ T b d - s b d r ( l c .  

By some calculation, we get 
N - 2  N - l  N - I 

where s , ~ s i n  B i ,  Q=COS 8, and p= T". 

(IO), it is easy to get h p ,  k,, as 
If we set diagonal matrix n = { l ,  1,. . . , 1, -I}, then PjeX, T i e x .  According to 

N - I 
k,= 1 (a,e,)r~si+lsitz.. .s.v-l. 

, = I  

Then from (12), the expression for the Lagrangian is 
N - I  Y =  ( ~ e , ~ , , e , ) ~ ~ + ~ s ; ; . ~ .  . 2 

i= I 

Consequently, the canonical momenta ni have the following form 
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Here we see that the field-dependent terms of the r- and s-matrices are only related to 
Oi(x),  the Riemannian connection under the Schwinger gauge on SN-' 131, which can 
be seen more clearly under the gauge transformation given in the next section. 

where 

ki=si+is i+z. .  . sN-1 

eventually we get 
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where 
I N-1  

Pi=- (h?T’h)@G 
2 1-1 

From equation (44) we can see that r‘ is just a Riemmanian connection matrix on 
y-’, since the way in which it changes under a gauge transformation is the same as 
a connection. For example, if we take 

h(x)=R,v-2(TO,v-2).  . . Rz( -Bz )RI ( -&)  (45) 
from (44) we obtain 

which is exactly the Riemannian connection under the Wu-Yang gauge 131. 
In order to relate our r- and s-matrices to the r- and s-matrices given by Maillet 

and Forger et al, we take another special gauge transformation by replacing h-I with 
g. Then there exists 

H,=gh,,g-’+gS,g-‘=j, 

Kp =gk,g-l= -jp. 

1 @ g - ’ ( Y ) } k o ( x ) ~ g ( 4 ’ ) }  = -(J* + P;x) )G(s -  Y )  

g-I(x)@ 1 {g(x)@ko(.Y)} = (Jk + PXx))G(x -4’) 

Putting these two formulas into (19), we get the common linear equation (211. More- 
over, noticing 

and replacing sh #I, ch #I and sh # z ,  ch #2 with 1, p respectively, we also get equations 
(23) and (24). So the two different forms of r- and s-matrices can be associated by a 
special gauge transformation, or a frame change, but our r- and 8-matrices have more 
clear geometric meaning: the field-dependent terms are only related to the Riemmanian 
connection on the target manifold SN-l. 
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